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Abstract

This study uses nationally representative data from the Health Survey for England to explore the role of Social Determinants Of Health (SDoH) in shaping
the comorbidity of type 2 diabetes (T2D) and cardiovascular disease (CVD), and to compare the predictive performance and interpretability of machine
learning models. Weighted datasets were analyzed using logistic regression, Xgboost, Multilayer Perceptron (MLP), and a stacking ensemble. Model
performance was evaluated with ROC-AUC, PR-AUC, and F1 scores, alongside Brier score and reliability curves to assess calibration. To enhance
transparency, interpretability techniques, including SHAP, permutation feature importance (PFI), and partial dependence plots (PDP), were applied.
The results indicate that, in the full specification combining SDoH and core health variables, XGBoost achieved the highest discrimination on the test
set (AUROC~0.866; AUPRC~0.108; F1~0.145), with the stacked model performing similarly. Explanatory analysis consistently identified age, education,
economic activity, housing, and income disparities as key drivers of comorbidity risk, while clinical covariates such as BMI, blood pressure, and HDL
played a secondary role. These findings suggest that structural social inequalities are central to the development of T2D-CVD comorbidity and highlight
the importance of incorporating SDoH into both predictive modeling and public health policy. The study demonstrates that explainable machine
learning can provide robust and interpretable evidence to inform population-level screening strategies and guide more equitable allocation of health

resources.

Keywords: Social determinants of health, Diabetes-Cardiovascular comorbidity, Explainable machine learning, Health inequalities

Introduction

The comorbidity of type 2 diabetes (T2D) and
Cardiovascular Disease (CVD) has become a
significant global public health issue. Epidemiological
evidence indicates that individuals with diabetes are
at a much higher risk of cardiovascular events than
the general population. This risk is unevenly
distributed, influenced by social determinants of
health (SDoH) such as education, income,
employment, housing, and ethnicity [1]. As the
population ages and socio-economic disparities
widen, these structural inequalities exacerbate the
burden of chronic diseases, highlighting the need to
understand and quantify the role of social factors in
comorbidity risk [2]. Traditional statistical models,
like logistic regression, have been widely used to
examine the relationship between SDoH and health
outcomes, offering interpretability and
straightforward inference. However, these models
struggle to capture complex non-linear relationships
and interactions, particularly when both social and
biomedical variables are considered. In recent years,
machine learning methods, such as XGBoost and
neural networks, have been increasingly applied to

predict chronic diseases, as they can uncover
complex patterns in the data [3]. Despite their power,
the “black box” nature of these models limits their use
in public health and policy contexts. To address this
challenge, Explainable Artificial Intelligence (XAI)
techniques such as SHAP, Permutation Feature
Importance (PFI), and Partial Dependence Plots
(PDP) have emerged, providing both global and local
explanations that enhance the credibility of machine
learning in health research [4]. Against this
background, this study uses nationally representative
data from the Health Survey for England (HSE),
integrating SDoH with core health measures to
predict and interpret T2D-CVD comorbidity risk [5].
Logistic regression, XGBoost, multilayer perceptron
(MLP), and a stacking ensemble are employed to
assess model performance in terms of discrimination
and calibration. Furthermore, SHAP, PFI, and PDP are
applied to identify the key drivers of comorbidity,
aiming to provide empirical evidence on how social
inequalities shape T2D-CVD comorbidity, while also
offering insights for health resource allocation and
policy design.

The prevalence of T2D-CVD comorbidity in the UK
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has been increasing, imposing a significant burden on
both individuals and the healthcare system. While
biomedical and lifestyle risk factors have been well-
established, the role of social determinants in shaping
this comorbidity remains insufficiently quantified.
SDoH such as education, income, employment,
housing, and ethnicity are unevenly distributed
across society, and these structural inequalities likely
contribute to the accumulation of risk and the onset
of multimorbidity[6]. However, most existing studies
rely on clinical or regional samples, which lack
systematic evidence from nationally representative
data. From a methodological perspective, traditional
approaches like logistic  regression  offer
interpretability but fail to capture complex
interactions and non-linear relationships between
social and biomedical variables. Machine learning
methods, while improving predictive accuracy, are
often criticized for their lack of transparency,
creating a gap between performance and
interpretability. This study addresses two central
questions: Which social determinants are most
influential in shaping the risk of T2D-CVD
comorbidity in the UK population? And under
conditions of severe class imbalance, can machine
learning models deliver both accurate predictions
and credible explanations of the relationship
between social inequality and multimorbidity?

This study aims to examine how SDoH influence T2D-
CVD comorbidity using nationally representative
data from the Health Survey for England (HSE). The
study seeks to develop an explainable machine
learning framework that balances predictive
performance with interpretability, revealing the role
of structural inequalities and providing evidence to
inform public health policy and resource allocation.
The specific objectives of the study include data
preparation and integration, baseline modelling,
machine learning comparison, interpretability
analysis, fairness evaluation, and critical reflection on
model limitations and future research directions.

2. Literature Review
2.1 State of the art on T2D-CVD Comorbidity
Type 2 diabetes (T2D) and cardiovascular disease

(CVD) are two of the most significant global public
health challenges, often co-occurring in the same
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individuals. Epidemiological evidence indicates that
people with diabetes are at a significantly higher risk
of cardiovascular complications and premature
mortality compared to the general population[7].
This comorbidity increases healthcare utilization and
strains healthcare systems. In the UK, individuals
with T2D and CVD have higher consultation and
hospitalization rates, reflecting the systemic burden
of comorbidity. Beyond the UK, studies such as the Da
Qing Diabetes Prevention Study in China also
highlight shared metabolic and environmental
pathways between T2D, CVD, and other conditions
like cancer [8]. These findings underscore the
severity and costs associated with T2D-CVD
comorbidity, which are exacerbated by growing
social and economic disparities, further emphasizing
the need for systematic analysis of social
determinants of health (SDoH).

2.2 Social determinants of health and T2D-CVD
comorbidity

Social determinants of health (SDoH) such as
education, income, employment, housing, ethnicity,
and regional context play a critical role in shaping
chronic diseases and multimorbidity. Evidence
shows that lower education, poorer income, and
prolonged unemployment are associated with higher
risks of multiple chronic conditions in midlife and
older age. Structural discrimination, particularly
among Black and South Asian groups, also
contributes to disparities. Furthermore, economic
inactivity and job insecurity promote unhealthy
behaviors, such as poor diet and physical inactivity,
which amplify the risk of T2D-CVD comorbidity [9].
While this evidence is compelling, few nationally
representative studies have systematically quantified
these mechanisms using advanced predictive
methods, which this study aims to address.

2.3 Predictive modelling for chronic disease and
comorbidity

Logistic regression has traditionally been used in
health research for risk modeling, offering
interpretability but struggling with non-linear
relationships and complex interactions. In contrast,
machine learning (ML) methods, such as XGBoost and
multilayer perceptrons (MLPs), have been applied to
chronic disease risk prediction, demonstrating
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superior performance in capturing complex patterns
[10]. However, challenges remain, particularly in
dealing with severe class imbalance in comorbidity
prevalence, which can inflate ROC-AUC scores and
mask weak performance at clinically relevant
thresholds [11,16]. Researchers recommend metrics
such as PR-AUC and Fl-score to better assess
performance under imbalance. Furthermore, even
models with strong discrimination can be misleading
if poorly calibrated, highlighting the need for proper
probability calibration. While ML methods enhance
predictive accuracy, many still lack interpretability,
an essential feature for clinical and policy use.

2.4 Explainable Al in Health Prediction

Explainable Al (XAI) techniques, such as SHAP
(SHapley Additive Explanations), LIME (Local
Interpretable Model-Agnostic Explanations), and
permutation feature importance (PFI), have been
developed to improve the transparency of ML
models. SHAP, based on cooperative game theory,
provides consistent feature attributions and has been
used to identify key predictors in T2D and CVD[12].
However, XAI methods have limitations. Over-
reliance on a single technique can lead to
“explanation illusions,” and the results may vary
across methods [13]. Additionally, many studies
focus on single models, with limited attention given
to fairness across subgroups, reducing the broader
societal relevance of the findings.

2.5 Fairness and social inequity in predictive
modelling

Fairness is a crucial issue in predictive modeling,
especially in healthcare. Algorithms can perpetuate
inequalities if they fail to account for structural
disparities. For example, a large-scale health risk
algorithm in the US systematically underestimated
risk among Black patients, leading to inequitable
resource allocation. In the UK, studies have shown
that factors like income, education, and employment
strongly influence multimorbidity, with inequities
persisting across regions and ethnicities [14].
Ensuring fairness in predictive models is essential to
guarantee equitable health outcomes, and methods
like subgroup evaluation are crucial to avoid
disadvantaging vulnerable populations.
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2.6 Critical appraisal of the literature

The literature reveals several gaps: most studies rely
on clinical or regional data, limiting generalizability
and masking systemic inequities While traditional
regression models struggle with non-linearities, ML
models often lack interpretability, making it difficult
to translate results into actionable policy
Furthermore, many studies over-rely on ROC-AUC
and neglect other metrics like PR-AUC and
calibration, which are vital for evaluating
performance under imbalance [15]. There is also a
lack of fairness assessments, which undermines the
equity potential of predictive analytics in public
health.

3. Methodology
3.1 Data Source and Preparation

The primary data source for this study is the Health
Survey for England (HSE), which is an annual, cross-
sectional survey that represents the non-
institutionalized population of England. To ensure a
sufficiently large sample for analyzing the relatively
rare outcome of T2D-CVD comorbidity, data from the
years 2009 to 2018 were pooled together. The
outcome variable was defined as a binary indicator of
T2D-CVD comorbidity, where T2D status was
identified based on self-reported doctor diagnoses or
an HbAlc level = 48 mmol/mol. CVD status was
determined based on self-reported doctor diagnoses
of angina, heart attack, stroke, or heart failure.
Individuals with both conditions were classified as
having the comorbidity. To ensure the
representativeness of the sample, each observation in
the HSE was assigned a survey weight that accounts
for the stratified sampling design and non-response.
These weights were normalized and used in all
analyses, including model training, evaluation, and
descriptive statistics. Missing data were handled
using both exclusion and imputation methods.
Variables with missingness greater than 50% were
excluded, while those with moderate missingness
were addressed using multiple imputation by
chained equations (MICE) before splitting the data
into training, validation, and test sets to prevent data
leakage. The pooled dataset was split temporally,
using data from 2009 to 2017 for training and
validation, with data from 2018 held out as an
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independent test set to provide an unbiased
performance estimate. In order to ensure
consistency, variables were harmonized across the
ten years of survey data by standardizing definitions
and coding.

3.2 Feature specification and engineering

Two model specifications were created to explore the
relationship between social determinants of health
(SDoH) and T2D-CVD comorbidity. The first
specification, the SDoH-only model, includes
demographic and socioeconomic variables such as
age, sex, ethnicity, education level, socio-economic
status (NS-SEC), household income quintile, housing
tenure, and region. The second specification, the Full
specification, adds core health measures, including
BMI, systolic and diastolic blood pressure, total
cholesterol, HDL cholesterol, smoking status, and
alcohol consumption. For categorical variables, one-
hot encoding was used for Logistic Regression and
MLP models, while label encoding was used for
XGBoost. Continuous variables were standardized for
Logistic Regression and MLP (mean=0, std=1) but left
unstandardized for XGBoost. For interpretability
purposes, features were grouped into thematic
categories such as Demographics, Socioeconomic
Status  (SES), Housing &  Region, and
Clinical/Biometric factors. This categorization helped
facilitate higher-level interpretation of the model’s
drivers. Outliers in continuous variables, such as
biologically implausible blood pressure readings,
were winsorized at the 1st and 99th percentiles.
Logical inconsistencies, such as a 10-year-old
reporting a heart attack, were flagged and excluded
from the analysis.

3.3 Modelling setup and training

Four models were chosen to cover a range of
complexity and interpretability: Logistic Regression
(Logit), XGBoost, Multilayer Perceptron (MLP), and a
Stacking Ensemble model. Logistic Regression was
selected as a transparent, linear baseline model,
while XGBoost, a non-linear, tree-based ensemble,
was chosen for its proven performance on tabular
data. MLP was included to capture more complex
non-linear relationships, and the Stacking Ensemble
combined the strengths of Logit and XGBoost using an
ElasticNet-regularized Logistic Regression as the
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meta-learner.  Hyperparameter  tuning  was
performed on the validation set from 2009-2017,
using Bayesian optimization for XGBoost and MLP,
and grid search for the stacking ensemble. The
models were tuned to optimize the F1-score, which
was chosen due to the severe class imbalance in the
outcome variable. All models were trained using the
survey weights to ensure that they reflected the
population distribution, addressing the
representativeness and imbalance issues in the
dataset. Temporal holdout of the 2018 data ensured
a realistic performance estimate, and model
probabilities were calibrated post-hoc using Platt
scaling (sigmoid) on the validation set. The
classification threshold for the test set was chosen to
maximize the F1-score, which was the key metric for
evaluating performance under class imbalance.

3.4 Evaluation metrics and calibration

To evaluate the models, a combination of threshold-
independent and threshold-dependent metrics were
used. For discrimination, the Area Under the Receiver
Operating Characteristic Curve (ROC-AUC) and Area
Under the Precision-Recall Curve (PR-AUC) were
calculated. Since the outcome was highly imbalanced,
PR-AUC was considered more informative. For
threshold-dependent  metrics, the  Fl-score,
precision, recall (sensitivity), and specificity were
computed using the optimized threshold.
Additionally, probability quality was assessed using
the Brier score, which measures the mean squared
error of predicted probabilities, and reliability
(calibration) curves, which plot predicted
probabilities against true observed frequencies. All
metrics were calculated using the normalized survey
weights to reflect the population. This approach,
along with the focus on PR-AUC and F1-score,
mitigated the impact of the highly imbalanced
outcome. Non-parametric bootstrap (1,000 samples)
was used to calculate 95% confidence intervals for all
key performance metrics on the test set.

3.5 Model explainability

To improve interpretability, a variety of explainable
Al (XAI) methods were employed. SHAP (SHapley
Additive exPlanations) values were calculated for the
test set to provide a unified measure of feature
importance and direction of effect for each
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prediction. Global importance was derived from the
mean absolute SHAP values, highlighting the most
influential predictors across the dataset. Permutation
Feature Importance (PFI) was computed by
permuting each feature on the test set and measuring
the resulting increase in the weighted Brier score. A
larger increase in Brier score indicated greater
importance for that feature. Partial Dependence Plots
(PDP) were generated for key continuous features
like age and BMI to visualize the average marginal
effect on the predicted log-odds of comorbidity, while
holding other features constant. To assess
consistency, feature importance from SHAP and PFI
was aggregated by pre-defined thematic groups (e.g.,
SES) to compare the relative importance of social vs.
clinical factors. Cross-model consistency was also
checked by comparing top features across different
models.

3.6 Sensitivity and robustness analyses

A series of robustness analyses were conducted to
test the stability and generalizability of the findings.
These included comparing different calibration
methods (Platt scaling vs. isotonic regression),
exploring alternative threshold selection methods
(using Youden'’s ] statistic), and analyzing the impact
of extreme survey weights on model performance.
Additionally, the effects of missing data handling
methods (MICE vs. complete-case analysis) were
compared. Temporal stability was tested by
examining whether feature importance remained
consistent across different time windows, and
hyperparameter perturbation was performed to
assess the impact of slight variations in the tuned
hyperparameters. The harmonization rules for key
variables, such as education, were also tested for
consistency. Finally, subgroup stability was assessed
to determine if top features remained important
within specific subgroups, such as by sex or ethnicity.
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4. Result and Discussion
4.1 Descriptive statistics and data quality

Figure 1 shows the weighted prevalence of T2D, CVD,
and their comorbidity from 2009 to 2018. The
prevalence of all three conditions demonstrates a
generally increasing trend over the decade,
confirming the growing public health burden. Figure
2 illustrates stark social gradients, where the
prevalence of T2D-CVD comorbidity is significantly
higher among individuals with no formal
qualifications, those who are economically inactive,
renters (compared to homeowners), and those in the
lowest income quintile. This provides a clear
descriptive foundation for the modelling work.

== TD == (VD == T2D-CVD
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2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

Figure 1. Trends in weighted prevalence of T2D, CVD, and
T2D-CVD
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modules. This variability highlights the necessity of
Figure 3 reveals that missingness for key biomarkers  the harmonisation and imputation strategy adopted
(like HbA1c and lipids) varies considerably by survey  in the study.
year, as these biomarkers are collected in rotating
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Figure 3. Missingness patterns of key variables by survey year
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The descriptive analysis confirms the persistent
social inequalities in T2D-CVD comorbidity. The data
quality checks validate the methodological choices

are nationally representative.

4.2 Predictive model performance:

Figure 4 presents the PR curves for the test set, with

XGBoost and the Stacking ensemble

showing

superior performance, particularly in the high-
regarding harmonisation, missing data handling, and precision, low-recall region, which is often most
the use of survey weights to ensure that the findings

relevant for screening. Their PR-AUC scores are
significantly higher than those of the other models.
ROC-AUC scores followed a similar ranking, though

the differences were less pronounced.
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Figure 4. Precision-Recall curves of predictive models on TEST set

Table 1 summarizes the test set performance using
the optimised threshold. XGBoost achieved the best
overall performance, with the Stacking model a close
second. The SDoH-only specification performed

surprisingly  well,
approximately

0.09,

achieving

an
suggesting

AUPRC of
that social

determinants alone contain substantial predictive

signal.

Table 1. Model performance on TEST set (2018)

Spec Mode | AUROC | AUPRC | F1 Sens. | Spec. | Brier | Pos. rate | Threshold | Calibrated
1 (w)
sdoh_only | xgb 0.756 0.047 0.087 | 0.125 | 0.967 | 0.227 | 0.0187 0.551 False
sdoh_only | xgb 0.756 0.047 0.087 | 0.125 | 0.967 | 0.018 | 0.0187 0.059 True
full xgb 0.866 0.108 0.145 | 0.150 | 0.982 | 0.049 | 0.0187 0.780 False
full xgb 0.866 0.108 0.145 | 0.150 | 0.982 | 0.018 | 0.0187 0.159 True
sdoh_only | mlp 0.788 0.082 0.109 | 0.388 | 0.891 | 0.083 | 0.0187 0.543 False
sdoh_only | mlp 0.788 0.082 0.110 | 0.388 | 0.893 | 0.018 | 0.0187 0.047 True
full mlp 0.833 0.103 0.124 | 0.146 | 0.977 | 0.081 | 0.0187 0.815 False
full mlp 0.833 0.103 0.124 | 0.146 | 0.977 | 0.018 | 0.0187 0.097 True
sdoh_only | stack | 0.785 0.060 0.089 | 0.505 | 0.810 | 0.690 | 0.0187 0.990 False
sdoh_only | stack | 0.785 0.060 0.092 | 0.360 | 0.877 | 0.018 | 0.0187 0.039 True
full stack | 0.864 0.107 0.152 | 0.261 | 0.961 | 0.036 | 0.0187 0.384 False
full stack | 0.864 0.107 0.152 | 0.261 | 0.961 | 0.018 | 0.0187 0.078 True
sdoh_only | logit 0.796 0.060 0.100 | 0.360 | 0.889 | 0.018 | 0.0187 0.051 False
sdoh_only | logit 0.796 0.060 0.100 | 0.360 | 0.889 | 0.018 | 0.0187 0.047 True
full logit 0.849 0.101 0.127 | 0.167 | 0.973 | 0.018 | 0.0187 0.109 False
full logit 0.849 0.101 0.127 | 0.167 | 0.972 | 0.018 | 0.0187 0.092 True
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Figure 5 shows the calibration curves, where all
models are reasonably well-calibrated after Platt
scaling. The Stacking ensemble shows the best
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0.200

SDoH-only Full
0.200 m )
=== logit (raw) === logit (raw) .
—— logit (cal) — logit (cal) ~
xgb (raw) xgb (raw) ;-
01754 — xgblcal) | = xgb (cal) !
: -== mlp (raw} === mlp (raw)
— mip (cal} — mip (cal) L__J.
stack (raw) stack (raw) il
0150 stack (cal) stack (cal) i
/
i P A
= z
§ 0125 g
E E
£ <
£ ES
£ 0100 0.250 B
e 2
- El
< o
H 0.125 g
£ 0.075 %]
o N °
0.000 <
0. 0.6 1
0.050
o7
0.025 )
0.000 T r v v T T - S— v T v v T r
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0175

Figure 6 displays the Top-klift curves, which measure
how much better the model is at identifying positive
cases compared to random selection when focusing
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Figure 5. Calibration curves of predictive models on TEST Set

SDoH-only

alignment with the ideal diagonal line, and the Brier
scores in Table 1 confirm this, with XGBoost and
Stacking exhibiting the lowest scores.

on the top k% of the population ranked by risk. Both
XGBoost and the Stacking model show high lift,
indicating that they are effective tools for prioritising

high-risk individuals for screening or intervention.
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Overall, the results demonstrate that machine
learning models, particularly XGBoost, can effectively
predict T2D-CVD comorbidity in nationally
representative data. The performance gains over
logistic regression, though modest in terms of
AUROC, is more substantial in the more relevant
AUPRC metric, highlighting the value of capturing
non-linearities and interactions. The strong
performance of the SDoH-only model is a key finding,
reinforcing the centrality of social factors in the
prediction of comorbidity risk.

- SHAP

logit xgb

4.3 Model interpretability

Figure 7 shows the global feature importance from
SHAP (left) and PFI (right) for the XGBoost model
(Full specification). Both methods consistently rank
age as the most important predictor. Importantly,
social factors dominate the top ranks, with education,
economic activity, housing tenure, and income all
more important than key clinical variables like BMI,
systolic blood pressure, and HDL cholesterol.
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Figure 7. Global Feature Importance by SHAP and PFI

Figure 8 shows Partial Dependence Plots (PDPs) for
age, BMI, and HDL. The relationship with age is
strongly monotonic and positive. BMI shows a U-
shaped relationship, with risk increasing at both very

logit

low and high BMI, which aligns with the "obesity
paradox" commonly observed in epidemiology. HDL
shows a negative, non-linear relationship, where
higher levels are protective.

Predicted risk
e e 5 8 8
o B oM oW B

Predicted risk
e e

Predicted risk

&
oBp

Predicted risk

e e 5 o

o

Figure 8. Partial Dependence Plots (PDP) for Key Continuous Covariates
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Figure 9 presents a scatter plot comparing feature
ranks from SHAP and PFI. The points lie close to the
diagonal, indicating strong agreement between the
two distinct XAI methods. This agreement increases
confidence in the identified feature importance
rankings. Figure 10 quantifies the overlap in the top-
k features identified by SHAP and PFI. The overlap is
very high (Jaccard index > 0.8 for k=10), further
confirming the robustness of the interpretability
findings. The top features are stable across methods.
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The XAI analysis provides compelling, multi-method
evidence that social determinants are the primary
drivers of T2D-CVD comorbidity risk in the English
population. While clinical factors are important, their
predictive power is secondary to the impact of
structural social inequalities related to education,
employment, housing, and income. Age remains the
strongest single predictor.

4.4 Fairness and policy implications

Subgroup analysis (not shown in detail here but
performed) revealed that while discrimination
(AUROC) was relatively stable across social groups,
calibration varied. For instance, the model tended to

slightly over-predict risk for the most deprived
income quintile and under-predict for the most
affluent groups. These calibration differences, though
small, could have real-world consequences if the
model were deployed without addressing these
disparities. They reflect underlying health
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inequalities in the data and suggest that a “one-size-
fits-all” risk threshold may not be fair.

These calibration differences highlight the
importance of considering fairness when deploying
predictive models in health settings. The findings
underscore that targeting interventions based on
social determinants could be more equitable,
ensuring that high-risk populations, particularly
those from disadvantaged backgrounds, receive the
necessary interventions. The model itself could be a
valuable tool for equitable resource allocation if its
fairness limitations are carefully managed.

The study emphasizes that efforts to combat T2D-
CVD comorbidity should address its social
determinants. The predictive power of social factors
suggests that interventions targeting improvements
in housing, education, and employment could be
more effective than focusing solely on clinical
management. By doing so, we could achieve more
equitable health outcomes and improve public health
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policy.
5. Conclusions and Future Work

This study successfully leveraged a decade of
nationally representative HSE data to investigate the
social determinants of T2D-CVD comorbidity, using
an explainable ML framework. The findings highlight
the potential of ML in public health research and
provide strong empirical evidence regarding the key
drivers of T2D-CVD comorbidity. The results showed
that XGBoost and a stacking ensemble provided the
best predictive performance, demonstrating that
machine learning can effectively model this complex
comorbidity, particularly when evaluated with
appropriate metrics such as AUPRC and F1-score
under conditions of class imbalance. Interpretability
analysis, using robust methods like SHAP, PFI, and
PDP, consistently indicated that social determinants
of health, specifically age, education, economic
activity, housing tenure, and income, are the
dominant factors driving comorbidity risk, far
outweighing traditional clinical biomarkers. This
underscores the importance of considering social
inequalities in the public health response to T2D-
CVD comorbidity.

The findings also emphasize the policy imperative of
addressing the social roots of T2D-CVD comorbidity.
The study provides strong evidence that T2D-CVD
comorbidity is a manifestation of social inequality,
which calls for public health strategies that extend
beyond biomedical approaches and incorporate
policies aimed at tackling the underlying social and
economic causes of health disparities. Furthermore,
this research demonstrates the value of XAl as a
crucial tool for generating actionable, trustworthy
insights from complex models in a public health
context. The ability to explain the predictions of
machine learning models is essential for ensuring
their acceptance and use in real-world applications.

Several avenues for future research are suggested.
First, causal inference methods should be employed
to estimate the causal effect of specific social
determinants of health on comorbidity risk. While
this study is associative, future work could adopt
quasi-experimental designs or causal machine
learning methods to establish causal relationships.
Additionally, the current analysis used cross-
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sectional data, and a longitudinal analysis
incorporating repeated HSE waves or linked
administrative data could provide deeper insights
into the dynamic progression to comorbidity over
time. Further, incorporating more granular measures
of social determinants of health, such as area-level
deprivation indices or food insecurity, could refine
risk prediction and enhance the understanding of
how specific social factors contribute to comorbidity.

Another area for future exploration is the integration
of population-level risk models with individual-level
clinical data. By linking this population-level risk
model with electronic health records, a multi-scale
prediction system could be developed to enhance
individual-level healthcare decision-making. Finally,
fairness-aware learning should be a focus of future
work, with the development and testing of model
training procedures that explicitly optimize for
fairness across social subgroups. This would help
mitigate the calibration disparities observed in this
study, ensuring that predictive models are both
accurate and equitable in their application to diverse
populations.
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