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Abstract 

This study uses nationally representative data from the Health Survey for England to explore the role of Social Determinants Of Health (SDoH) in shaping 
the comorbidity of type 2 diabetes (T2D) and cardiovascular disease (CVD), and to compare the predictive performance and interpretability of machine 
learning models. Weighted datasets were analyzed using logistic regression, Xgboost, Multilayer Perceptron (MLP), and a stacking ensemble. Model 
performance was evaluated with ROC-AUC, PR-AUC, and F1 scores, alongside Brier score and reliability curves to assess calibration. To enhance 
transparency, interpretability techniques, including SHAP, permutation feature importance (PFI), and partial dependence plots (PDP), were applied. 
The results indicate that, in the full specification combining SDoH and core health variables, XGBoost achieved the highest discrimination on the test 
set (AUROC≈0.866; AUPRC≈0.108; F1≈0.145), with the stacked model performing similarly. Explanatory analysis consistently identified age, education, 
economic activity, housing, and income disparities as key drivers of comorbidity risk, while clinical covariates such as BMI, blood pressure, and HDL 
played a secondary role. These findings suggest that structural social inequalities are central to the development of T2D–CVD comorbidity and highlight 
the importance of incorporating SDoH into both predictive modeling and public health policy. The study demonstrates that explainable machine 
learning can provide robust and interpretable evidence to inform population-level screening strategies and guide more equitable allocation of health 
resources. 
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Introduction 

The comorbidity of type 2 diabetes (T2D) and 
Cardiovascular Disease (CVD) has become a 
significant global public health issue. Epidemiological 
evidence indicates that individuals with diabetes are 
at a much higher risk of cardiovascular events than 
the general population. This risk is unevenly 
distributed, influenced by social determinants of 
health (SDoH) such as education, income, 
employment, housing, and ethnicity [1]. As the 
population ages and socio-economic disparities 
widen, these structural inequalities exacerbate the 
burden of chronic diseases, highlighting the need to 
understand and quantify the role of social factors in 
comorbidity risk [2]. Traditional statistical models, 
like logistic regression, have been widely used to 
examine the relationship between SDoH and health 
outcomes, offering interpretability and 
straightforward inference. However, these models 
struggle to capture complex non-linear relationships 
and interactions, particularly when both social and 
biomedical variables are considered. In recent years, 
machine learning methods, such as XGBoost and 
neural networks, have been increasingly applied to  

predict chronic diseases, as they can uncover 
complex patterns in the data [3]. Despite their power, 
the “black box” nature of these models limits their use 
in public health and policy contexts. To address this 
challenge, Explainable Artificial Intelligence (XAI) 
techniques such as SHAP, Permutation Feature 
Importance (PFI), and Partial Dependence Plots 
(PDP) have emerged, providing both global and local 
explanations that enhance the credibility of machine 
learning in health research [4]. Against this 
background, this study uses nationally representative 
data from the Health Survey for England (HSE), 
integrating SDoH with core health measures to 
predict and interpret T2D–CVD comorbidity risk [5]. 
Logistic regression, XGBoost, multilayer perceptron 
(MLP), and a stacking ensemble are employed to 
assess model performance in terms of discrimination 
and calibration. Furthermore, SHAP, PFI, and PDP are 
applied to identify the key drivers of comorbidity, 
aiming to provide empirical evidence on how social 
inequalities shape T2D–CVD comorbidity, while also 
offering insights for health resource allocation and 
policy design. 

The prevalence of T2D–CVD comorbidity in the UK 
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has been increasing, imposing a significant burden on 
both individuals and the healthcare system. While 
biomedical and lifestyle risk factors have been well-
established, the role of social determinants in shaping 
this comorbidity remains insufficiently quantified. 
SDoH such as education, income, employment, 
housing, and ethnicity are unevenly distributed 
across society, and these structural inequalities likely 
contribute to the accumulation of risk and the onset 
of multimorbidity[6]. However, most existing studies 
rely on clinical or regional samples, which lack 
systematic evidence from nationally representative 
data. From a methodological perspective, traditional 
approaches like logistic regression offer 
interpretability but fail to capture complex 
interactions and non-linear relationships between 
social and biomedical variables. Machine learning 
methods, while improving predictive accuracy, are 
often criticized for their lack of transparency, 
creating a gap between performance and 
interpretability. This study addresses two central 
questions: Which social determinants are most 
influential in shaping the risk of T2D–CVD 
comorbidity in the UK population? And under 
conditions of severe class imbalance, can machine 
learning models deliver both accurate predictions 
and credible explanations of the relationship 
between social inequality and multimorbidity? 

This study aims to examine how SDoH influence T2D–
CVD comorbidity using nationally representative 
data from the Health Survey for England (HSE). The 
study seeks to develop an explainable machine 
learning framework that balances predictive 
performance with interpretability, revealing the role 
of structural inequalities and providing evidence to 
inform public health policy and resource allocation. 
The specific objectives of the study include data 
preparation and integration, baseline modelling, 
machine learning comparison, interpretability 
analysis, fairness evaluation, and critical reflection on 
model limitations and future research directions. 

2. Literature Review 

2.1 State of the art on T2D–CVD Comorbidity 

Type 2 diabetes (T2D) and cardiovascular disease 
(CVD) are two of the most significant global public 
health challenges, often co-occurring in the same 

individuals. Epidemiological evidence indicates that 
people with diabetes are at a significantly higher risk 
of cardiovascular complications and premature 
mortality compared to the general population[7]. 
This comorbidity increases healthcare utilization and 
strains healthcare systems. In the UK, individuals 
with T2D and CVD have higher consultation and 
hospitalization rates, reflecting the systemic burden 
of comorbidity. Beyond the UK, studies such as the Da 
Qing Diabetes Prevention Study in China also 
highlight shared metabolic and environmental 
pathways between T2D, CVD, and other conditions 
like cancer [8]. These findings underscore the 
severity and costs associated with T2D–CVD 
comorbidity, which are exacerbated by growing 
social and economic disparities, further emphasizing 
the need for systematic analysis of social 
determinants of health (SDoH). 

2.2 Social determinants of health and T2D–CVD 
comorbidity 

Social determinants of health (SDoH) such as 
education, income, employment, housing, ethnicity, 
and regional context play a critical role in shaping 
chronic diseases and multimorbidity. Evidence 
shows that lower education, poorer income, and 
prolonged unemployment are associated with higher 
risks of multiple chronic conditions in midlife and 
older age. Structural discrimination, particularly 
among Black and South Asian groups, also 
contributes to disparities. Furthermore, economic 
inactivity and job insecurity promote unhealthy 
behaviors, such as poor diet and physical inactivity, 
which amplify the risk of T2D–CVD comorbidity [9]. 
While this evidence is compelling, few nationally 
representative studies have systematically quantified 
these mechanisms using advanced predictive 
methods, which this study aims to address. 

2.3 Predictive modelling for chronic disease and 
comorbidity 

Logistic regression has traditionally been used in 
health research for risk modeling, offering 
interpretability but struggling with non-linear 
relationships and complex interactions. In contrast, 
machine learning (ML) methods, such as XGBoost and 
multilayer perceptrons (MLPs), have been applied to 
chronic disease risk prediction, demonstrating 
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superior performance in capturing complex patterns 
[10]. However, challenges remain, particularly in 
dealing with severe class imbalance in comorbidity 
prevalence, which can inflate ROC-AUC scores and 
mask weak performance at clinically relevant 
thresholds [11,16]. Researchers recommend metrics 
such as PR-AUC and F1-score to better assess 
performance under imbalance. Furthermore, even 
models with strong discrimination can be misleading 
if poorly calibrated, highlighting the need for proper 
probability calibration. While ML methods enhance 
predictive accuracy, many still lack interpretability, 
an essential feature for clinical and policy use. 

2.4 Explainable AI in Health Prediction 

Explainable AI (XAI) techniques, such as SHAP 
(SHapley Additive Explanations), LIME (Local 
Interpretable Model-Agnostic Explanations), and 
permutation feature importance (PFI), have been 
developed to improve the transparency of ML 
models. SHAP, based on cooperative game theory, 
provides consistent feature attributions and has been 
used to identify key predictors in T2D and CVD[12]. 
However, XAI methods have limitations. Over-
reliance on a single technique can lead to 
“explanation illusions,” and the results may vary 
across methods [13]. Additionally, many studies 
focus on single models, with limited attention given 
to fairness across subgroups, reducing the broader 
societal relevance of the findings. 

2.5 Fairness and social inequity in predictive 
modelling 

Fairness is a crucial issue in predictive modeling, 
especially in healthcare. Algorithms can perpetuate 
inequalities if they fail to account for structural 
disparities. For example, a large-scale health risk 
algorithm in the US systematically underestimated 
risk among Black patients, leading to inequitable 
resource allocation. In the UK, studies have shown 
that factors like income, education, and employment 
strongly influence multimorbidity, with inequities 
persisting across regions and ethnicities [14]. 
Ensuring fairness in predictive models is essential to 
guarantee equitable health outcomes, and methods 
like subgroup evaluation are crucial to avoid 
disadvantaging vulnerable populations. 
 

2.6 Critical appraisal of the literature 

The literature reveals several gaps: most studies rely 
on clinical or regional data, limiting generalizability 
and masking systemic inequities While traditional 
regression models struggle with non-linearities, ML 
models often lack interpretability, making it difficult 
to translate results into actionable policy 
Furthermore, many studies over-rely on ROC-AUC 
and neglect other metrics like PR-AUC and 
calibration, which are vital for evaluating 
performance under imbalance [15]. There is also a 
lack of fairness assessments, which undermines the 
equity potential of predictive analytics in public 
health. 

3. Methodology 

3.1 Data Source and Preparation 

The primary data source for this study is the Health 
Survey for England (HSE), which is an annual, cross-
sectional survey that represents the non-
institutionalized population of England. To ensure a 
sufficiently large sample for analyzing the relatively 
rare outcome of T2D–CVD comorbidity, data from the 
years 2009 to 2018 were pooled together. The 
outcome variable was defined as a binary indicator of 
T2D–CVD comorbidity, where T2D status was 
identified based on self-reported doctor diagnoses or 
an HbA1c level ≥ 48 mmol/mol. CVD status was 
determined based on self-reported doctor diagnoses 
of angina, heart attack, stroke, or heart failure. 
Individuals with both conditions were classified as 
having the comorbidity. To ensure the 
representativeness of the sample, each observation in 
the HSE was assigned a survey weight that accounts 
for the stratified sampling design and non-response. 
These weights were normalized and used in all 
analyses, including model training, evaluation, and 
descriptive statistics. Missing data were handled 
using both exclusion and imputation methods. 
Variables with missingness greater than 50% were 
excluded, while those with moderate missingness 
were addressed using multiple imputation by 
chained equations (MICE) before splitting the data 
into training, validation, and test sets to prevent data 
leakage. The pooled dataset was split temporally, 
using data from 2009 to 2017 for training and 
validation, with data from 2018 held out as an 
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independent test set to provide an unbiased 
performance estimate. In order to ensure 
consistency, variables were harmonized across the 
ten years of survey data by standardizing definitions 
and coding. 

3.2 Feature specification and engineering 

Two model specifications were created to explore the 
relationship between social determinants of health 
(SDoH) and T2D–CVD comorbidity. The first 
specification, the SDoH-only model, includes 
demographic and socioeconomic variables such as 
age, sex, ethnicity, education level, socio-economic 
status (NS-SEC), household income quintile, housing 
tenure, and region. The second specification, the Full 
specification, adds core health measures, including 
BMI, systolic and diastolic blood pressure, total 
cholesterol, HDL cholesterol, smoking status, and 
alcohol consumption. For categorical variables, one-
hot encoding was used for Logistic Regression and 
MLP models, while label encoding was used for 
XGBoost. Continuous variables were standardized for 
Logistic Regression and MLP (mean=0, std=1) but left 
unstandardized for XGBoost. For interpretability 
purposes, features were grouped into thematic 
categories such as Demographics, Socioeconomic 
Status (SES), Housing & Region, and 
Clinical/Biometric factors. This categorization helped 
facilitate higher-level interpretation of the model’s 
drivers. Outliers in continuous variables, such as 
biologically implausible blood pressure readings, 
were winsorized at the 1st and 99th percentiles. 
Logical inconsistencies, such as a 10-year-old 
reporting a heart attack, were flagged and excluded 
from the analysis. 

3.3 Modelling setup and training 

Four models were chosen to cover a range of 
complexity and interpretability: Logistic Regression 
(Logit), XGBoost, Multilayer Perceptron (MLP), and a 
Stacking Ensemble model. Logistic Regression was 
selected as a transparent, linear baseline model, 
while XGBoost, a non-linear, tree-based ensemble, 
was chosen for its proven performance on tabular 
data. MLP was included to capture more complex 
non-linear relationships, and the Stacking Ensemble 
combined the strengths of Logit and XGBoost using an 
ElasticNet-regularized Logistic Regression as the 

meta-learner. Hyperparameter tuning was 
performed on the validation set from 2009–2017, 
using Bayesian optimization for XGBoost and MLP, 
and grid search for the stacking ensemble. The 
models were tuned to optimize the F1-score, which 
was chosen due to the severe class imbalance in the 
outcome variable. All models were trained using the 
survey weights to ensure that they reflected the 
population distribution, addressing the 
representativeness and imbalance issues in the 
dataset. Temporal holdout of the 2018 data ensured 
a realistic performance estimate, and model 
probabilities were calibrated post-hoc using Platt 
scaling (sigmoid) on the validation set. The 
classification threshold for the test set was chosen to 
maximize the F1-score, which was the key metric for 
evaluating performance under class imbalance. 

3.4 Evaluation metrics and calibration 

To evaluate the models, a combination of threshold-
independent and threshold-dependent metrics were 
used. For discrimination, the Area Under the Receiver 
Operating Characteristic Curve (ROC-AUC) and Area 
Under the Precision-Recall Curve (PR-AUC) were 
calculated. Since the outcome was highly imbalanced, 
PR-AUC was considered more informative. For 
threshold-dependent metrics, the F1-score, 
precision, recall (sensitivity), and specificity were 
computed using the optimized threshold. 
Additionally, probability quality was assessed using 
the Brier score, which measures the mean squared 
error of predicted probabilities, and reliability 
(calibration) curves, which plot predicted 
probabilities against true observed frequencies. All 
metrics were calculated using the normalized survey 
weights to reflect the population. This approach, 
along with the focus on PR-AUC and F1-score, 
mitigated the impact of the highly imbalanced 
outcome. Non-parametric bootstrap (1,000 samples) 
was used to calculate 95% confidence intervals for all 
key performance metrics on the test set. 

3.5 Model explainability 

To improve interpretability, a variety of explainable 
AI (XAI) methods were employed. SHAP (SHapley 
Additive exPlanations) values were calculated for the 
test set to provide a unified measure of feature 
importance and direction of effect for each 
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prediction. Global importance was derived from the 
mean absolute SHAP values, highlighting the most 
influential predictors across the dataset. Permutation 
Feature Importance (PFI) was computed by 
permuting each feature on the test set and measuring 
the resulting increase in the weighted Brier score. A 
larger increase in Brier score indicated greater 
importance for that feature. Partial Dependence Plots 
(PDP) were generated for key continuous features 
like age and BMI to visualize the average marginal 
effect on the predicted log-odds of comorbidity, while 
holding other features constant. To assess 
consistency, feature importance from SHAP and PFI 
was aggregated by pre-defined thematic groups (e.g., 
SES) to compare the relative importance of social vs. 
clinical factors. Cross-model consistency was also 
checked by comparing top features across different 
models. 

3.6 Sensitivity and robustness analyses 

A series of robustness analyses were conducted to 
test the stability and generalizability of the findings. 
These included comparing different calibration 
methods (Platt scaling vs. isotonic regression), 
exploring alternative threshold selection methods 
(using Youden’s J statistic), and analyzing the impact 
of extreme survey weights on model performance. 
Additionally, the effects of missing data handling 
methods (MICE vs. complete-case analysis) were 
compared. Temporal stability was tested by 
examining whether feature importance remained 
consistent across different time windows, and 
hyperparameter perturbation was performed to 
assess the impact of slight variations in the tuned 
hyperparameters. The harmonization rules for key 
variables, such as education, were also tested for 
consistency. Finally, subgroup stability was assessed 
to determine if top features remained important 
within specific subgroups, such as by sex or ethnicity. 

4. Result and Discussion 

4.1 Descriptive statistics and data quality 

Figure 1 shows the weighted prevalence of T2D, CVD, 
and their comorbidity from 2009 to 2018. The 
prevalence of all three conditions demonstrates a 
generally increasing trend over the decade, 
confirming the growing public health burden. Figure 
2 illustrates stark social gradients, where the 
prevalence of T2D–CVD comorbidity is significantly 
higher among individuals with no formal 
qualifications, those who are economically inactive, 
renters (compared to homeowners), and those in the 
lowest income quintile. This provides a clear 
descriptive foundation for the modelling work. 

 

Figure 1. Trends in weighted prevalence of T2D, CVD, and 
T2D–CVD 
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Figure 2. Weighted Prevalence of T2D, CVD, and T2D–CVD by SDoH Strata 

Figure 3 reveals that missingness for key biomarkers 
(like HbA1c and lipids) varies considerably by survey 
year, as these biomarkers are collected in rotating 

modules. This variability highlights the necessity of 
the harmonisation and imputation strategy adopted 
in the study. 

 

Figure 3. Missingness patterns of key variables by survey year 
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The descriptive analysis confirms the persistent 
social inequalities in T2D–CVD comorbidity. The data 
quality checks validate the methodological choices 
regarding harmonisation, missing data handling, and 
the use of survey weights to ensure that the findings 
are nationally representative. 

4.2 Predictive model performance: 

Figure 4 presents the PR curves for the test set, with 
XGBoost and the Stacking ensemble showing 
superior performance, particularly in the high-
precision, low-recall region, which is often most 
relevant for screening. Their PR-AUC scores are 
significantly higher than those of the other models. 
ROC-AUC scores followed a similar ranking, though 
the differences were less pronounced. 

 

Figure 4. Precision–Recall curves of predictive models on TEST set 

Table 1 summarizes the test set performance using 
the optimised threshold. XGBoost achieved the best 
overall performance, with the Stacking model a close 
second. The SDoH-only specification performed  

surprisingly well, achieving an AUPRC of 
approximately 0.09, suggesting that social 
determinants alone contain substantial predictive 
signal. 

Table 1. Model performance on TEST set (2018) 

Spec Mode
l 

AUROC AUPRC F1 Sens. Spec. Brier Pos. rate 
(w) 

Threshold Calibrated 

sdoh_only xgb 0.756 0.047 0.087 0.125 0.967 0.227 0.0187 0.551 False 
sdoh_only xgb 0.756 0.047 0.087 0.125 0.967 0.018 0.0187 0.059 True 
full xgb 0.866 0.108 0.145 0.150 0.982 0.049 0.0187 0.780 False 
full xgb 0.866 0.108 0.145 0.150 0.982 0.018 0.0187 0.159 True 
sdoh_only mlp 0.788 0.082 0.109 0.388 0.891 0.083 0.0187 0.543 False 
sdoh_only mlp 0.788 0.082 0.110 0.388 0.893 0.018 0.0187 0.047 True 
full mlp 0.833 0.103 0.124 0.146 0.977 0.081 0.0187 0.815 False 
full mlp 0.833 0.103 0.124 0.146 0.977 0.018 0.0187 0.097 True 
sdoh_only stack 0.785 0.060 0.089 0.505 0.810 0.690 0.0187 0.990 False 
sdoh_only stack 0.785 0.060 0.092 0.360 0.877 0.018 0.0187 0.039 True 
full stack 0.864 0.107 0.152 0.261 0.961 0.036 0.0187 0.384 False 
full stack 0.864 0.107 0.152 0.261 0.961 0.018 0.0187 0.078 True 
sdoh_only logit 0.796 0.060 0.100 0.360 0.889 0.018 0.0187 0.051 False 
sdoh_only logit 0.796 0.060 0.100 0.360 0.889 0.018 0.0187 0.047 True 
full logit 0.849 0.101 0.127 0.167 0.973 0.018 0.0187 0.109 False 
full logit 0.849 0.101 0.127 0.167 0.972 0.018 0.0187 0.092 True 
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Figure 5 shows the calibration curves, where all 
models are reasonably well-calibrated after Platt 
scaling. The Stacking ensemble shows the best 

alignment with the ideal diagonal line, and the Brier 
scores in Table 1 confirm this, with XGBoost and 
Stacking exhibiting the lowest scores. 

 

Figure 5. Calibration curves of predictive models on TEST Set 

Figure 6 displays the Top-k lift curves, which measure 
how much better the model is at identifying positive 
cases compared to random selection when focusing  

on the top k% of the population ranked by risk. Both 
XGBoost and the Stacking model show high lift, 
indicating that they are effective tools for prioritising 
high-risk individuals for screening or intervention. 

 

Figure 6. Top-k lift curves on TEST set 
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Overall, the results demonstrate that machine 
learning models, particularly XGBoost, can effectively 
predict T2D–CVD comorbidity in nationally 
representative data. The performance gains over 
logistic regression, though modest in terms of 
AUROC, is more substantial in the more relevant 
AUPRC metric, highlighting the value of capturing 
non-linearities and interactions. The strong 
performance of the SDoH-only model is a key finding, 
reinforcing the centrality of social factors in the 
prediction of comorbidity risk. 

4.3 Model interpretability 

Figure 7 shows the global feature importance from 
SHAP (left) and PFI (right) for the XGBoost model 
(Full specification). Both methods consistently rank 
age as the most important predictor. Importantly, 
social factors dominate the top ranks, with education, 
economic activity, housing tenure, and income all 
more important than key clinical variables like BMI, 
systolic blood pressure, and HDL cholesterol. 

 

Figure 7. Global Feature Importance by SHAP and PFI 

Figure 8 shows Partial Dependence Plots (PDPs) for 
age, BMI, and HDL. The relationship with age is 
strongly monotonic and positive. BMI shows a U-
shaped relationship, with risk increasing at both very  

low and high BMI, which aligns with the "obesity 
paradox" commonly observed in epidemiology. HDL 
shows a negative, non-linear relationship, where 
higher levels are protective. 

 

Figure 8. Partial Dependence Plots (PDP) for Key Continuous Covariates 
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Figure 9 presents a scatter plot comparing feature 
ranks from SHAP and PFI. The points lie close to the 
diagonal, indicating strong agreement between the 
two distinct XAI methods. This agreement increases 
confidence in the identified feature importance 
rankings. Figure 10 quantifies the overlap in the top-
k features identified by SHAP and PFI. The overlap is 
very high (Jaccard index > 0.8 for k=10), further 
confirming the robustness of the interpretability 
findings. The top features are stable across methods. 

 

Figure 9. Rank agreement of feature importance (SHAP 
vs. PFI) Across Models 

 

Figure 10. Top-k overlap between SHAP and PFI feature rankings 

The XAI analysis provides compelling, multi-method 
evidence that social determinants are the primary 
drivers of T2D–CVD comorbidity risk in the English 
population. While clinical factors are important, their 
predictive power is secondary to the impact of 
structural social inequalities related to education, 
employment, housing, and income. Age remains the 
strongest single predictor. 

4.4 Fairness and policy implications 

Subgroup analysis (not shown in detail here but 
performed) revealed that while discrimination 
(AUROC) was relatively stable across social groups, 
calibration varied. For instance, the model tended to  

slightly over-predict risk for the most deprived 
income quintile and under-predict for the most 
affluent groups. These calibration differences, though 
small, could have real-world consequences if the 
model were deployed without addressing these 
disparities. They reflect underlying health  

inequalities in the data and suggest that a “one-size-
fits-all” risk threshold may not be fair. 

These calibration differences highlight the 
importance of considering fairness when deploying 
predictive models in health settings. The findings 
underscore that targeting interventions based on 
social determinants could be more equitable, 
ensuring that high-risk populations, particularly 
those from disadvantaged backgrounds, receive the 
necessary interventions. The model itself could be a 
valuable tool for equitable resource allocation if its 
fairness limitations are carefully managed. 

The study emphasizes that efforts to combat T2D–
CVD comorbidity should address its social 
determinants. The predictive power of social factors 
suggests that interventions targeting improvements 
in housing, education, and employment could be 
more effective than focusing solely on clinical 
management. By doing so, we could achieve more 
equitable health outcomes and improve public health 
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policy. 

5. Conclusions and Future Work 

This study successfully leveraged a decade of 
nationally representative HSE data to investigate the 
social determinants of T2D–CVD comorbidity, using 
an explainable ML framework. The findings highlight 
the potential of ML in public health research and 
provide strong empirical evidence regarding the key 
drivers of T2D–CVD comorbidity. The results showed 
that XGBoost and a stacking ensemble provided the 
best predictive performance, demonstrating that 
machine learning can effectively model this complex 
comorbidity, particularly when evaluated with 
appropriate metrics such as AUPRC and F1-score 
under conditions of class imbalance. Interpretability 
analysis, using robust methods like SHAP, PFI, and 
PDP, consistently indicated that social determinants 
of health, specifically age, education, economic 
activity, housing tenure, and income, are the 
dominant factors driving comorbidity risk, far 
outweighing traditional clinical biomarkers. This 
underscores the importance of considering social 
inequalities in the public health response to T2D–
CVD comorbidity. 

The findings also emphasize the policy imperative of 
addressing the social roots of T2D–CVD comorbidity. 
The study provides strong evidence that T2D–CVD 
comorbidity is a manifestation of social inequality, 
which calls for public health strategies that extend 
beyond biomedical approaches and incorporate 
policies aimed at tackling the underlying social and 
economic causes of health disparities. Furthermore, 
this research demonstrates the value of XAI as a 
crucial tool for generating actionable, trustworthy 
insights from complex models in a public health 
context. The ability to explain the predictions of 
machine learning models is essential for ensuring 
their acceptance and use in real-world applications. 

Several avenues for future research are suggested. 
First, causal inference methods should be employed 
to estimate the causal effect of specific social 
determinants of health on comorbidity risk. While 
this study is associative, future work could adopt 
quasi-experimental designs or causal machine 
learning methods to establish causal relationships. 
Additionally, the current analysis used cross-

sectional data, and a longitudinal analysis 
incorporating repeated HSE waves or linked 
administrative data could provide deeper insights 
into the dynamic progression to comorbidity over 
time. Further, incorporating more granular measures 
of social determinants of health, such as area-level 
deprivation indices or food insecurity, could refine 
risk prediction and enhance the understanding of 
how specific social factors contribute to comorbidity. 

Another area for future exploration is the integration 
of population-level risk models with individual-level 
clinical data. By linking this population-level risk 
model with electronic health records, a multi-scale 
prediction system could be developed to enhance 
individual-level healthcare decision-making. Finally, 
fairness-aware learning should be a focus of future 
work, with the development and testing of model 
training procedures that explicitly optimize for 
fairness across social subgroups. This would help 
mitigate the calibration disparities observed in this 
study, ensuring that predictive models are both 
accurate and equitable in their application to diverse 
populations. 
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